InfO(1) Cup, Day 1
Ploiești, Romania
Saturday $10^{\text {th }}$ February, 2024

Problem XORsecv

Input file stdin
 Output file stdout

XORnelius is the greatest mathematician in the Info(I)cup Kingdom. One day he stumbled upon a very interesting algorithmic task. But instead of solving it, which would have been easy for him, he decided to give it to you as a test.

You are given an array $a_{0}, a_{1}, \ldots, a_{N-1}$ of numbers. For a contiguous subsequence (i, j) of this array, we calculate the $X O R v a l u e$ of the sequence using the following steps:

1. We create an array b of size $k=j-i+1$, so that $b_{0}=a_{i}, b_{1}=a_{i+1}, \ldots b_{k-1}=a_{j}$.
2. The XORvalue is equal to the sum of the values $\left(b_{i} \operatorname{XOR} i\right)^{P}$, for all $0 \leq i<k .{ }^{1}$

Calculate the sum of the XORvalues of all contiguous subsequences of the array, modulo $10^{9}+7$. Formally, if we let $f(i, j)$ denote the XORvalue of sequence (i, j), we have that

$$
f(i, j)=\sum_{m=0}^{j-i}\left(a_{i+m} \operatorname{xor} m\right)^{P}
$$

You are asked to find the following value

$$
\sum_{i=0}^{N-1} \sum_{j=i}^{N-1} f(i, j) \quad\left(\bmod 10^{9}+7\right)
$$

Your task is to solve this problem and prove to XORnelius that you are as great of a mathematician as he is.

Input data

The first line of input contains N, denoting the size of the array, and P. The second line contains values $a_{0}, a_{1}, \ldots, a_{N-1}$.

Output data

The only line of output must contain the required answer.

Restrictions

- $1 \leq N \leq 250000$
- $1 \leq P \leq 1000000000$
- $0 \leq a_{i}<2^{18}$, for all $0 \leq i<N$

[^0]InfO(1) Cup, Day 1
Ploiești, Romania
Saturday $10^{\text {th }}$ February, 2024

$\#$	Points	Restrictions
1	7	$N \leq 100, P=1$
2	8	$N \leq 1000, P=1$
3	12	$N \leq 1000$
4	15	$P=1$
5	12	$N \leq 50000, a_{i}<8$, for all $0 \leq i<N$
6	14	$N \leq 50000, P=2$
7	32	No further restrictions

Examples

	Input file					
3	3				556	Output file
3	2	4				
7	1					
4	2					
4	2	3	6	5	7	11

Explanations

First example The XORvalues of all the contiguous subsequences in the array are written below:

- $i=0, j=0: b=\{3\}, f(0,0)=(3 \text { XOR } 0)^{3}=3^{3}=27$
- $i=0, j=1: b=\{3,2\}, f(0,1)=(3 \operatorname{XOR} 0)^{3}+(2 \operatorname{XOR} 1)^{3}=3^{3}+3^{3}=27+27=54$
- $i=0, j=2: b=\{3,2,4\}, f(0,2)=(3 \operatorname{XOR} 0)^{3}+(2 \operatorname{XOR} 1)^{3}+(4 \operatorname{XOR})^{3}=3^{3}+3^{3}+6^{3}=$ $27+27+216=270$
- $i=1, j=1: b=\{2\}, f(1,1)=(2 \operatorname{xOR} 0)^{3}=2^{3}=8$
- $i=1, j=2: b=\{2,4\}, f(1,2)=(2 \operatorname{XOR} 0)^{3}+(4 \operatorname{XOR} 1)^{3}=2^{3}+5^{3}=8+125=133$
- $i=2, j=2: b=\{4\}, f(2,2)=(4 \text { XOR } 0)^{3}=4^{3}=64$

The sum of all these values is equal to 556 modulo $10^{9}+7$.

[^0]: ${ }^{1}$ The xor operator is denoted by ${ }^{\text {~ }}$ in $\mathrm{C}++$. Formally, we define it as follows. For $x, y \in \mathbb{N}$, let z be equal to $x \operatorname{xOR} y$. Then, the k-th bit of z is equal to 1 if and only if the k-th bit of x is equal to 1 or the k-th bit of y is equal to 1 , but not both.

