InfO(1) Cup, Day 2
Ploiești, Romania
Sunday $11^{\text {th }}$ February, 2024

Problem Lattice

Input file	stdin
Output file	stdout

For every two positive integers N, M, we define lattice (N, M) to be those points (x, y) for which N divides x and M divides y, and where x, y are non-negative integers. In other words, the points of lattice (N, M) can be thought of as those points reachable from $(0,0)$ by moving a multiple of N steps to the right, and a multiple of M steps up. For example, lattice $(2,3)$ looks like this.

Given K and a list of P points $\left(x_{1}, y_{1}\right), \ldots,\left(x_{P}, y_{P}\right)$ with integer coordinates in the plane, answer the following question: For how many positive integers x does lattice (x, x) contain at least K of the P points?

Input data

The first line of the input contains P and K. The next P lines contain the points $\left(x_{i}, y_{i}\right)$.

Output data

The first line of the output should contain the answer to the question.

Restrictions

- $1 \leq x_{i}, y_{i} \leq 1000000$
- $1 \leq K \leq P \leq 200000$

$\#$	Points	Restrictions
1	16	All the values from input are at most 1000
2	11	All the values from input are at most 100000
3	15	$x_{i}=y_{i}$ for all the points
4	21	The sequence $x_{1}, \ldots, x_{P}, y_{1}, \ldots, y_{P}$ contains pairwise distinct elements.
5	37	No further restrictions.

Examples

	Input file	Output file
3	2	1
1	3	
3	6	
4	2	
5	2	3
2	2	
5	10	4
15	5	
17	7	

Explanations

First example. In the first example, only lattice $(1,1)$ contains at least 2 points.

Second example. Here, lattice $(1,1)$ contains all the points, lattice $(2,2)$ has the first and the third point and lattice $(5,5)$ has the second and the fourth point. Below is a grid showing all the lattices. lattice $(1,1)$ is the underlying grid, lattice $(2,2)$ is marked by red x 's, and lattice $(5,5)$ is marked by blue x's. The points in all three lattices are marked by purple x's. The P points in the input are marked by filled-in circles (\cdot), with the colour showing which grid they belong to: if a point is only in lattice $(1,1)$ it is gray, if it is in lattice $(1,1)$ and lattice $(2,2)$ it is red, and if it is in lattice $(1,1)$ and lattice $(5,5)$ it is blue.

