
Solution description, InfO(1)Cup 2024

InfO(1)Cup 2024 Scientific Committee

February 2024

Lattice
Author: Lucian Badea

We are given a set of points 𝑆 = {(𝑥1, 𝑦1), … , (𝑥𝛲, 𝑦𝛲)} and an integer𝐾. We are asked
to find for how many integers 𝑛 we have that 𝑛 ∣ 𝑥𝑖 and 𝑛 ∣ 𝑦𝑖 for at least 𝐾 indices
𝑖 ∈ {1, … , 𝑃}.

We first observe the following 𝑛 ∣ 𝑥𝑖 and 𝑛 ∣ 𝑦𝑖 if and only if 𝑛 ∣ gcd(𝑥𝑖, 𝑦𝑖),
where gcd(𝑎, 𝑏) is the greatest common divisor of 𝑎 and 𝑏. Thus, replacing (𝑥𝑖, 𝑦𝑖)with
gcd(𝑥𝑖, 𝑦𝑖) = 𝑔𝑖, we reduce our problem to the following: given a set 𝑆 = {𝑧1, … , 𝑧} and
an integer𝐾, for howmany 𝑛 do we have 𝑛 ∣ 𝑧𝑖 for at least𝐾 indices 𝑖 ∈ {1, … , 𝑃}.

How can we do this efficiently? First, create an array𝐴[𝑧] = #{𝑖 ∣ 𝑧𝑖 = 𝑧} i.e.𝐴[𝑧]
is the number of elements 𝑧𝑖 equal to 𝑧. Now, fix some integer 𝑛 ∈ {1, … , 𝑉}, where
𝑉 = max𝑖 𝑧𝑖, and consider all the multiples of 𝑛. An integer 𝑛 is counted towards the
solution if∑⌊𝑉/𝑛⌋

𝑚=1 𝐴[𝑚𝑛] ≥ 𝐾. To compute the sum on the left requires at most 𝑉/𝑛
iterations, so overall this algorithm requires∑𝑉

𝑛=1 𝑉/𝑛 = 𝑂(𝑉 log𝑉) iterations overall.
This is sufficient to solve the task.

Gregor and maximum length
Author: Rares IordacheMihai

We are given a sequence 𝑎1, … , 𝑎𝑛 ∈ {1, … , 𝑉}, and, for a set 𝑆 ⊆ {1, … , 𝑉} we can
eliminate all 𝑎𝑖 such that 𝑎𝑖 ∈ 𝑆. We want to do this so that the resulting sequence is
non-decreasing and of maximum length.

This problem is equivalent to the following one: find the maximal non-decreasing
subsequence of 𝑎1, … , 𝑎𝑛 which, if a value 𝑎 belongs to the subsequence, then all other
values equal to 𝑎 must belong to the subsequence. We call a subsequence with this

1

property full. Our algorithm will thus be a modification of the algorithm for finding the
longest non-decreasing subsequence. Let 𝑓𝑥 be the number of indices 𝑖 for which 𝑎𝑖 = 𝑥.

Let us step through the elements in 𝑎1, … , 𝑎𝑛. When we are at step 𝑖, we will main-
tain a set 𝑃 = {(𝑥1, 𝑙1), … , (𝑥𝑘, 𝑙𝑘)} which represents the maximal full non-decreasing
subsequences which terminate at or before element 𝑎𝑖. A pair (𝑥, 𝑙) represents a full
non-decreasing subsequence terminating at 𝑥with length 𝑙. Observe that if 𝑥𝑖 ≥ 𝑥𝑗 but
𝑙𝑖 ≤ 𝑙𝑗 then (𝑥𝑗, 𝑙𝑗) is always pointless (it is worse that (𝑥𝑖, 𝑙𝑖) since 𝑙𝑖 ≤ 𝑙𝑗, but also it is
harder to continue this sequence since 𝑥𝑖 ≥ 𝑥𝑗). Since we care about maximising the
length of the subsequence, we will maintain the property that 𝑥1 ≤ 𝑥2 ≤ … ≤ 𝑥𝑘 and
𝑙1 ≤ 𝑙2 ≤ … ≤ 𝑙𝑘.

Suppose that at step 𝑖we are at the leftmost element equal to 𝑎𝑖. Then we can see, for
all the full non-decreasing subsequences ending with elements equal to 𝑎𝑖, what will be
the longest possible subsequence up to this point. It must be a subsequence represented
by (𝑥, 𝑙)with 𝑥 < 𝑎𝑖; furthermore, it is optimum to take the maximum such 𝑥, since this
corresponds to the maximum 𝑙. Thus, find the maximum 𝑡 such that 𝑥𝑡 ≤ 𝑎𝑖, observe
that the longest possible full non-decreasing subsequence ending at an element equal to
𝑎𝑖 must be of length 𝑙𝑡 + 𝑓𝑎𝑖 . We also store the fact that the second-to-last element in such
a sequence is 𝑥𝑡— let this fact be denoted by 𝑝[𝑎𝑖] = 𝑥𝑡.

Now, when we arrive at the element 𝑎𝑗 which is the rightmost element equal to 𝑎𝑖,
we must introduce this subsequence to the set 𝑃. Let 𝑥 = 𝑎𝑖 be the last element in this
subsequence, and 𝑙 = 𝑙𝑡 + 𝑓𝑎𝑖 be the length of it. Firstly, we observe that (𝑥, 𝑙) cannot be
added into 𝑃 if the largest 𝑥′ ≤ 𝑥 for which (𝑥′, 𝑙′) ∈ 𝑃 has 𝑙′ ≥ 𝑙— since then (𝑥′, 𝑙′)
is better than (𝑥, 𝑙). Otherwise, (𝑥, 𝑙)must be added into 𝑃, and it might erase several
elements (𝑥″, 𝑙″). Indeed, we must repeatedly find the smallest 𝑥″ ≥ 𝑥, and check if
𝑙″ ≤ 𝑙, in which case we must erase (𝑥″, 𝑙″) from 𝑃. At the end of the algorithm, we get
the list𝑃 = {(𝑥1, 𝑙1), … , (𝑥𝑘, 𝑙𝑘)} and observe that the solution is given by 𝑙𝑘. Furthermore,
by going from 𝑥𝑘 to 𝑝[𝑥𝑘] to 𝑝[𝑝[𝑥𝑘]] and so on, we can find the elements which we must
not erase.

Now, let us turn to the data structure 𝑃. We can see that 𝑃 holds pairs (𝑥, 𝑙); we
interpret 𝑥 as the key, and 𝑙 as the value. 𝑃must be able to retrieve the value corresponding
to a key, must be able to support inserting and deleting elements by key, and must also
be able to find the smallest key greater than some given key, and the largest key smaller
than some given key. We observe that the data structure std::map<int, int> does
precisely this, in log 𝑛 time.

Howmany operations must be done on 𝑃? We observe that we must do𝑂(𝑛) key
searches, and 𝑂(𝑛) insertions into 𝑃. The number of deletions is not obvious from
the algorithm — but observe that it must be at most the number of insertions (one
cannot delete more elements than one has inserted!) so it is also𝑂(𝑛). It follows that this
algorithm takes𝑂(𝑛 log 𝑛) time.

2

XorSecv
Author: Iulian Arsenoiu, TudorMușat, Tamio Vesa-Nakajima

We are given an array 𝑎1, … , 𝑎𝑛 and an integer 𝑃. We must compute

𝑛
∑
𝑖=1

𝑛
∑
𝑗=𝑖

𝑗−𝑖

∑
𝑘=0

(𝑎𝑖+𝑘 xor 𝑘)
𝛲.

We introduce the Iverson bracket. For some statement 𝜙, if 𝜙 is true then [𝜙] = 1,
otherwise [𝜙] = 0. So, for example, [0 < 1] = 1 but [1 < 0] = 0.

Thus, we can rewrite the previous formula as follows.

𝑛
∑
𝑖=1

𝑛
∑
𝑗=𝑖

𝑛
∑
𝑘=0

(𝑎𝑖+𝑘 xor 𝑘)
𝛲[𝑘 ≤ 𝑗 − 𝑖] =

𝑛
∑
𝑘=0

𝑛
∑
𝑖=1

(𝑎𝑖+𝑘 xor 𝑘)
𝛲

𝑛
∑
𝑗=𝑖
[𝑘 + 𝑖 ≤ 𝑗]

=
𝑛
∑
𝑘=0

𝑛
∑
𝑖=1

(𝑎𝑖+𝑘 xor 𝑘)
𝛲max(𝑛 − 𝑘 − 𝑖 + 1, 0) =

𝑛
∑
𝑘=0

𝑛−𝑘
∑
𝑖=1

(𝑎𝑖+𝑘 xor 𝑘)
𝛲(𝑛 − 𝑘 − 𝑖 + 1).

We now introduce a change of variables. Let 𝑡 = 𝑖 + 𝑘. Then the previous expression
is equal to

𝑛
∑
𝑘=0

𝑛
∑
𝑡=𝑘+1

(𝑎𝑡 xor 𝑘)
𝛲(𝑛 − 𝑡 + 1) =

𝑛
∑
𝑘=0

𝑛
∑
𝑡=1

(𝑎𝑡 xor 𝑘)
𝛲(𝑛 − 𝑡 + 1)[𝑡 ≥ 𝑘 + 1]

=
𝑛
∑
𝑡=1

𝑛
∑
𝑘=0

(𝑎𝑡 xor 𝑘)
𝛲(𝑛 − 𝑡 + 1)[𝑡 ≥ 𝑘 + 1] =

𝑛
∑
𝑡=1

(𝑛 − 𝑡 + 1)
𝑡−1
∑
𝑘=0

(𝑎𝑡 xor 𝑘)
𝛲

Hence it is sufficient to compute the following function

𝑓(𝑥, 𝑡) =
𝑡−1
∑
𝑘=0

(𝑥 xor 𝑘)𝛲,

as the solution is then just∑𝑛
𝑡=1(𝑛 − 𝑡 + 1)𝑓(𝑎𝑡, 𝑡).

Now, consider the set 𝑆(𝑥, 𝑡) = {𝑥 xor 𝑘 ∣ 0 ≤ 𝑘 < 𝑡}. We have that 𝑓(𝑥, 𝑡) =
∑𝑦∈𝑆(𝑥,𝑡) 𝑦

𝛲. Thus it would be helpful for us to first understand the structure of 𝑆(𝑥, 𝑡)
better.

Structure of 𝑆(𝑥, 𝑡). Suppose that 𝑡 = 𝑏 + 2𝑎, where 2𝑎+1 ∣ 𝑏. In other words 2𝑎 is the
least significant 1-bit of 𝑡. Then we observe that 𝑆(𝑥, 𝑡) is equal to

𝑆(𝑥, 𝑏) ∪ {𝑥 xor (𝑏 + 𝑖) ∣ 𝑖 ∈ {0, … , 2𝑎 − 1}}.

3

But note now that 𝑥xor (𝑏+𝑖)where 𝑖 ∈ {0, … , 2𝑎−1} can bemade equal to any intgeri
which coincides with 𝑥 xor 𝑏 for all except the last 𝑎 bits, in exactly one way. Hence

𝑆(𝑥, 𝑏 + 2𝑎) = 𝑆(𝑥, 𝑏) ∪ {𝑥 xor 𝑏, … , (𝑥 xor 𝑏) + 2𝑎 − 1}.

It follows that each 𝑆(𝑥, 𝑡) is the union of at most log 𝑛 different disjoint intervals (as
𝑡 ≤ 𝑛). This is the key property we will use.

Computing𝑓(𝑥, 𝑡). Let𝑇[𝑛] = 1𝛲+⋯+𝑛𝛲. Observe that𝑥𝛲+⋯+𝑦𝛲 = 𝑇[𝑦]−𝑇[𝑥−1]
(if 𝑇[0] = 0). We observe that 𝑆(𝑥, 𝑡) is the disjoint union of log 𝑛 different intervals;
since we want to compute∑𝑦∈𝑆(𝑥,𝑡) 𝑦

𝛲, we can use this decomposition of 𝑆(𝑥, 𝑡) into
intervals to split this sum into the sum of those log 𝑛 intervals, each of which can be
computed using 𝑇.

We then use this function 𝑓 to compute the result as explained above. We note that
the total time complexity is𝑂(𝑛 log 𝑛).

Bracket wheel
Author: Predescu Sebastian

In this problem, we are given a sequence of brackets 𝑠1, … , 𝑠𝑛, and we must swap at
most 𝑘 pairs of brackets so that as many cyclic shifts of the resulting sequence form a
properly balanced sequence of brackets. To solve this problem we first devote some time
to understanding bracket sequences.

Structure of sequences of brackets. Consider for instance the sequence of brackets
((())()), which is properly balanced. We can alternately represent this as a “mountain”,
in the following way:

We draw the mountain from left to right; every time we reach a (we go up one step,
and every time we reach a) we go down one step. With this representation, when is a

4

sequence of brackets properly balanced? Firstly, it must go from height 0 to height 0
(which is guaranteed by the fact that 𝑠1, … , 𝑠𝑛 has 𝑛 open and closed brackets respectively).
Second, themountainmust never go below0. For example ())(() is not properly balanced:

Now, we are ready to understand the number of cyclic shifts that are properly bal-
anced. Given a sequence of brackets that contains the same number of closed and open
brackets, the number of cyclic shifts that are balanced is equal to the number of times the
mountain passes through the minimum height. For instance, for)()(())(, we have the
following mountain.

The mountain passes through the minimum 3 times, and hence there are 3 balanced
cyclic shifts, i.e. (())()(), ()(())() and ()()(()).

We finally observe that we can initially rotate the sequence so that the mountain
never passes below 0. We do this by first computing the heights of the mountain, then
rotating the sequence to begin at one of the minimal heights. We do this, so we assume
the mountain of 𝑠1, … , 𝑠𝑛 never passes below 0.

Understanding swaps. We now consider what a swap does to our sequences. There
are two cases. Firstly, if 𝑛 = 2 then clearly the result is always 1, since there are only two
possible bracket sequence i.e. () and)(, and the result is always 1. So assume 𝑛 > 2. Now,
a swap can either swap two equal parentheses (in which case nothing happens), or it can
swap two different parentheses.

Now, note that the effect of the operation is the same as turning one (into a), and
one) into a (. Thus, we can reach a sequence 𝑡1, … , 𝑡𝑛 from 𝑠1, … , 𝑠𝑛 by swapping pairs of
brackets if and only if we can reach it by turning 𝑥 open parentheses to closed parentheses,
and 𝑥 closed parentheses to open parentheses, for some 0 ≤ 𝑥 ≤ 𝑘.

5

Algorithm. We are now ready to describe our algorithm. It will use the dynamic
programming strategy. Let 𝑑[𝑖][𝑚][𝑥][𝑦] denote the maximum numbers our mountain
can go through theminimum, if we consider the first 𝑖 parentheses, the currentminimum
is𝑚, we have turned 𝑥 open brackets to closed brackets, and 𝑦 closed brackets to open
brackets. We only need this information for 𝑖 ∈ {0, … , 𝑛}, 𝑚 ∈ {−2𝑘, … , 0}, 𝑥, 𝑦 ∈
{0, … , 𝑘}. Observe that the base case is𝑑[0][0][0][0] = 1; we can then set𝑑[0][⋆][⋆][⋆] =
−∞ for all other cells with 𝑖 = 0.

We will present our algorithm using a “forward update”-style dynamic programming
strategy. Thismeans that for every state (𝑖, 𝑚, 𝑥, 𝑦), we computewhich stateswe can reach,
and update those states accordingly. Thus suppose we have reached state (𝑖, 𝑚, 𝑥, 𝑦). We
need to update two potential cases: if we change parenthesis 𝑖+1 or not. SupposeΔ𝑥 = 1
if 𝑠𝑖+1 = (and we change it to), and 0 otherwise; likewise let Δ𝑦 = 1 if 𝑠𝑖+1 =) and we
change it to (. We will then reach a state (𝑖 + 1,𝑚′, 𝑥′, 𝑦′)with 𝑥′ = 𝑥 + Δ𝑥, 𝑦′ = 𝑦 + Δ𝑦.
What will be𝑚′? We have two cases.

We change the minimum. Suppose ℎ[𝑖] is the height of point 𝑖 in the mountain for
𝑠1, … , 𝑠𝑛 without changing anything. The height at the new state will be ℎ[𝑖]−2𝑥′ +
2𝑦′. If𝑚 > ℎ[𝑖] − 2𝑥′ + 2𝑦′ then the newminimumwill become ℎ[𝑖] − 2𝑥′ + 2𝑦′,
so we need to update the 𝑑[𝑖 + 1][ℎ[𝑖] − 2𝑥′ + 2𝑦′][𝑥′][𝑦]with value 1.

We do not change the minimum. Suppose now that ℎ[𝑖] − 2𝑥′ + 2𝑦′ ≥ 𝑚. Then we
need to update𝑑[𝑖+1][𝑚][𝑥′][𝑦′]with either𝑑[𝑖][𝑚][𝑥][𝑦] or𝑑[𝑖][𝑚][𝑥][𝑦]+1,
with the +1 being applied if ℎ[𝑖] − 2𝑥′ + 2𝑦′ = 𝑚 i.e. the minimum is hit.

Applying the described algorithm, we get an𝑂(𝑛𝑘3) dynamic programming algo-
rithm. By saving only two “lines” of the array𝑑 i.e. 𝑑[𝑖][⋆][⋆][⋆] and𝑑[𝑖+1][⋆][⋆][⋆], we
also get𝑂(𝑘3)memory, which greatly optimises both the time and memory complexity.

Ping-Pong
Author: Lucian Badea

In this problem, we are given three integers, 𝑎, 𝑏 and 𝑐. Wemust calculate the number
of different configurations of ping-pong games that can be played, so that in the end, the
first player has 𝑎wins, the second player has 𝑏wins, and the third player has 𝑐wins. After
every game, the winner stays at the table and plays against the person that was initially
watching.

Interpreting the problem. First of all, it is important to find a way of interpreting
the problem, so that it becomes a string counting problem, rather than what it initially

6

was. For simplicity, we will count the number of configurations in which each player
watches the first game. For instance, we assume that Alice does not play in the first game.
From her point of view, any game configuration can be seen as a string, each character of
the string being equal to𝑊 (a win), 𝐿 (a loss) or 𝑆 (a match which she spectated). Then,
these strings have some properties: Firstly, since Alice watches the first game, all of these
strings must begin with an 𝑆. Secondly, after any 𝐿, the string can either end, or there
must be an 𝑆.

Therefore, any string representing a configuration can be of one of the following two
forms:

𝑆𝑊𝑊…𝑊⏟
𝐿1

𝐿𝑆𝑊𝑊…𝑊⏟
𝐿2

𝐿…𝑆𝑊𝑊…𝑊⏟
𝐿𝑛𝑟

𝐿

or

𝑆𝑊𝑊…𝑊⏟
𝐿1

𝐿𝑆𝑊𝑊…𝑊⏟
𝐿2

𝐿…𝑆𝑊𝑊…𝑊⏟
𝐿nr−1

𝐿𝑆𝑊𝑊…𝑊⏟
𝐿nr

where 0 ≤ 𝐿𝑖 for all 1 ≤ 𝑖 ≤ nr. We call a sequence comprising an 𝑆, several𝑊 and an 𝐿 a
complete sequence, since the outcomes of the games in the sequence do not influence any
game outside of the sequence, and at the end of a complete sequence, the player watching
is the same as at the beginning of the sequence.

Understanding how complete sequences affect points. It is easy to see that 𝑎 =
𝐿1 + 𝐿2 + ⋯ + 𝐿nr. However, a complete sequence can decode two possible scenarios:
when Bob wins the first game of the sequence, or when Charlie wins the first game of the
sequence. Depending on the length of the sequence, the score of Bob and Charlie can
change as follows:

The length of the sequence is even. Then, the player who wins the first game also
wins the last one, therefore his score is increased by 2, while the other player’s score
remains unchanged.

The length of the sequence if odd. Then, the player who loses the first game wins the
last one, therefore both players’ scores are increased by 1.

Counting the number of scenarios. Firstly, the first type of string that represents a
configuration can be seen as a concatenation of multiple complete sequences. The second
type of string can be seen as a string of the first type of length 𝑎 + 𝑏 + 𝑐 + 1 instead of
𝑎+𝑏+ 𝑐, fromwhich the last character is removed. Depending on the parity of the length
of the last complete sequence of this string, the number of points gained by Bob and
Charlie also changes. If the length is even, then the player who wins the first game of
the last sequence loses a point. Otherwise, the other player loses a point. We make the
following notations (from the first player’s perspective):

7

• 𝐸(𝑥, 𝑦, 𝑧) is the number of scenarios where the first player wins 𝑥 games, the second
playerwins 𝑦 games, the thirdplayerwins 𝑧 games, the first gameof the last complete
sequence is won by the third player, and the last complete sequence is even

• 𝑂(𝑥, 𝑦, 𝑧) is the number of scenarios where the first player wins 𝑥 games, the
second player wins 𝑦 games, the third player wins 𝑧 games, the first game of the last
complete sequence is won by the third player, and the last complete sequence is
odd

Then, the total number of scenarios (where Alice spectates the first game) can be
divided into:

• 𝑂(𝑎, 𝑏, 𝑐) + 𝑂(𝑎, 𝑐, 𝑏) + 𝐸(𝑎, 𝑏, 𝑐) + 𝐸(𝑎, 𝑐, 𝑏): the number of configurations en-
coded by strings of the first type

• 𝑂(𝑎, 𝑏, 𝑐 + 1) + 𝑂(𝑎, 𝑐, 𝑏 + 1): the number of configurations encoded by strings
of the second type, which end in an odd-length sequence

• 𝐸(𝑎, 𝑏, 𝑐 + 1) + 𝐸(𝑎, 𝑐, 𝑏 + 1): the number of configurations encoded by strings of
the second type, which end in an even-length sequence

We are left with calculating 𝑂(𝑥, 𝑦, 𝑧) and 𝐸(𝑥, 𝑦, 𝑧). Let 𝑘 be the number of odd-
length complete sequences in the string. Let nr𝑦 be the number of even-length complete
sequences which add 2 points to the score of the second player, and nr𝑧 be the number
of even length complete sequences which add 2 points to the score of the third player.
Then, nr𝑦 =

𝑦−𝑘
2 and nr𝑧 =

𝑧−𝑘
2 . Moreover, nr, the total number of complete sequences,

is equal to 𝑘 + nr𝑦 + nr𝑧. It is important to note that when either one of this numbers is
not an integer, the values of𝑂(𝑥, 𝑦, 𝑧) and 𝐸(𝑥, 𝑦, 𝑧) are 0. For a fixed 𝑘, the number of
different strings is equal to the number of ways of assigning even lengths to all complete
sequences, multiplied by the number of ways to choose 𝑘 sequences out of them and add
1 to their length. For𝑂(𝑥, 𝑦, 𝑧), this is equal to

(
𝑥−𝑘
2 + nr − 1
nr − 1) × (nr − 1𝑘 − 1)

(since one of the odd sequences is always the last one), and for 𝐸(𝑥, 𝑦, 𝑧), it is equal to

(
𝑥−𝑘
2 + nr − 1
nr − 1) × (nr − 1𝑘)

(since the last sequence is always even). Then, we must select the even sequences which
add 2 to the score of each player, and the winner of the first match of all odd sequences.
For𝑂(𝑥, 𝑦, 𝑧), this is equal to (nr𝑦+nr𝑧nr𝑧

)×2𝑘−1, and for𝐸(𝑥, 𝑦, 𝑧) it is equal to (nr𝑦+nr𝑧−1nr𝑧−1
)×2𝑘.

8

Therefore, letting

𝑀𝛰 = {𝑥 ∈ ℕ|1 ≤ 𝑥 ≤ min(𝑎, 𝑏, 𝑐), 2|(𝑎 − 𝑘)},
𝑀𝛦 = {𝑥 ∈ ℕ|0 ≤ 𝑥 ≤ min(𝑎, 𝑏, 𝑐 − 1), 2|(𝑎 − 𝑘)},

we have the following formulas:

𝑂(𝑥, 𝑦, 𝑧) = ∏
𝑘∈𝛭𝛰

(
𝑥−𝑘
2 + nr − 1
nr − 1) × (nr − 1𝑘 − 1) × (

nr𝑦 + nr𝑧
nr𝑧

) × 2𝑘−1

𝐸(𝑥, 𝑦, 𝑧) = ∏
𝑘∈𝛭𝛦

(
𝑥−𝑘
2 + nr − 1
nr − 1) × (nr − 1𝑘) × (

nr𝑦 + nr𝑧 − 1
nr𝑧 − 1

) × 2𝑘

We can also similarly calculate the number of configurations in which Bob and Charlie
don’t play in the first match.

Maxstack
Author: Iulian Arsenoiu

Interpreting the problem. First of all, this problem can be entirely solved without
tree knowledge. However, it is easier to understand the solution when thinking about the
array of operations as a tree. (We note that trees are included within the syllabus.) The
tree is constructed as follows: Initially, there is only one node in the tree, node 0. Each
push operation adds a new child to the node we are currently in, assigns the value added
to the new edge (from now on, we will call it the edge of the node), and then sends us to
the new node, while a pop operation sends us to the parent of the node we are currently
in. Furthermore, by 𝑠(𝑥)we denote the operations in the array from the one which adds
𝑥, to the one which sends us to its parent.

Solution for 𝐶 = 1. Every query (𝑙, 𝑟) can be seen as starting from one of the nodes in
the tree and simulating the operations of 𝑠(𝑙, 𝑟) on that node. After each operation, the
maximum value on the path from our current node to the starting node is added to the
result. Let valnode be the result of 𝑠(node). Let upnode be the first node on the path from
node to 0with the property that the value on the edge of upnode is strictly greater than the
value on the edge of node. Then the value of the edge of node node can only affect the val
of the nodes on the path between node and upnode (not including upnode). Let nrchnode be
the number of children of node, and nrnode be the number of times the value of the edge
of node is the maximal value in the stack, when performing the operations of 𝑠(node).
Then, nrnode = 1 + nrchnode +∑

𝑢𝑝[𝑖]=node
𝑖 nr𝑖. The value of val for all nodes on the path

9

between node and 𝑢𝑝node must be increased with nrnode multiplied by the value of the
edge of node. This can be done usingDifference arrays, or Binary indexed trees. Finding
the values of up can be either done with aRange minimum query, or with a stack which,
when entering a node, removes all values smaller than the value of the edge of that node,
and when it returns to the node, adds them again.

A finally empty query is equivalent to calculating the value of val of a certain node.
A normal query is equivalent to calculating the sum of the values of val for several
consecutive nodes with the same parent. Depending on the implementation, the time
complexity can either be𝑂(𝑁 log2𝑁) or𝑂(𝑁).

Understanding the queries for 𝐶 = 2. We define a series of nodes as a maximal set
of nodes which have the same parent. Then, let 𝑆1, 𝑆2, … , 𝑆𝑘node be the children of a node.
For a query (𝑙, 𝑟), let 𝑙node be the first node in 𝑆 so that 𝑠(𝑆𝑙node) is included in (𝑙, 𝑟), and
𝑟node be the last node in 𝑆with this property. If no such node exists, we consider 𝑙node to
be 1 and 𝑟node to be 0. Then, the answer to the query is equal to:

𝑛
∑

node=1

𝑟node
∑
𝑖=𝑙node

𝑟node
∑
𝑗=𝑖

𝑗

∑
𝑝=𝑖

val𝑆𝑝

Subtasks 5 & 6. For these two subtasks of 𝐶 = 2, we are guaranteed that the query
sequence is correct. For a query (𝑙, 𝑟), let top be the parent of the node added when
performing the operation 𝑙. Then, except for the series of node top, all series are either
completely included in the query, or not included at all. Let sumnode and psumnode be:

sumnode =
𝑘node
∑
𝑖=1

𝑘node
∑
𝑗=𝑖

𝑗

∑
𝑝=𝑖

𝑣𝑎𝑙𝑆𝑝

psumnode = sumnode +
parent(𝑖)=node

∑
𝑖

psum𝑖

The values of sum and psum can easily be calculated using aDepth-first search and
some mathematical formulas. Then, for Subtask 5, it is enough to output psumtop. For
Subtask 6, the result is equal to:

𝑟node
∑
𝑖=𝑙node

psum𝑖 +
𝑟node
∑
𝑖=𝑙node

𝑟node
∑
𝑗=𝑖

𝑗

∑
𝑝=𝑖

val𝑆𝑝

This can be calculated using some more complex difference arrays and mathematical
formulas.

10

Subtasks 7 & 8 For Subtask 7, we can go through all series and apply the formulas
found before using a brute-force algorithm. Please note that going through all series, and
for each series, going through all of its nodes is fast enough, since a node can only be part
of a single series.

For Subtask 8, we must further optimise the brute-force algorithm. We will divide
the series into two categories: light - series having less than 𝐶 nodes, and heavy - series
having more than 𝐶 nodes. To solve the queries for the heavy series, it is enough to
go through all heavy series (note that there cannot be more than 𝛮

𝐶 such series) and
use the same difference arrays as in Subtask 6. For the light series, we must solve the
queries offline. For each series, we will use a data structure (for example a square root
decomposition or a segment tree), and each time we get to a new node, we update all the
nodes in the series accordingly (note that we must update at most 𝐶 nodes). Depending
on the data structure used, the optimal choice of𝐶 can either lead to a time complexity
of𝑂(𝑁√𝑁 + 𝑄√𝑁) or𝑂(𝑁√𝑁 log2𝑁 +𝑄√𝑁 log2𝑁).

Solution for 𝐶 = 2. The last observation, which leads to a complete solution, is that
due to the restriction for 𝐶 = 2, it is guaranteed that for a query (𝑙, 𝑟), except for the
series of node top, the nodes that are completely included in the query are a prefix of the
series. Please note that a prefix can also mean the whole series. So, we must treat the top
node separately, as we did for Subtask 6. For the other nodes, we will add their values to
the query answers offline, using a Line Sweeping Algorithm. For a node, let 𝑙node be the
index of the first operation in 𝑠(node). We will process the array from left to right. Every
time we get to a pop operation, it means that the current prefix of a series has just been
extended. We will use a binary indexed tree, and for the series of a node node, we will
update the value with which its prefix contributes to the answers on the position 𝑙node.
When getting to position pos, we will answer to all queries (𝑙, 𝑟) for which 𝑟 = pos. The
answer of a query (𝑙, 𝑟) is equal to the sum of the numbers in the range [𝑙, 𝑟] in the binary
indexed tree. The total time complexity of this algorithm it𝑂(𝑁 log2𝑁 +𝑄 log2𝑁).

Taking the problem further. After reading this editorial, it might not be surprising to
find out that this problem can be solved without the restrictions on the queries provided
in the statement. For𝐶 = 1, it is enough to check whether the sequence is correct or not,
otherwise the answer is 0. For 𝐶 = 2, if we remove the restriction, we are left with the
idea that for each query, except for the series of node top, the nodes that are completely
included in the query are either a prefix or a suffix of the series. However, wemust change
the definition of node top, as being the Lowest Common Ancestor of all the nodes in the
query. The case for the suffixes is similar to the one for the prefixes, therefore the problem
can be still solved in𝑂(𝑁 log2𝑁 +𝑄 log2𝑁) total time complexity.

11

