
InfO(1)Cup 2023 Editorial

Problem “Valentine’s Day”

Prop: Iulian Arsenoiu

Subtask 1. For this subtask, we need to find the minimum lexicographic
perfect permutation. We can easily prove that in order to make our permu-
tations as small (lexicographically) as possible, we can simply start from left
to right and place on each position the minimum value that is still available
(it was not used already). We can do this using the set data structure.

Time complexity: O(n log n)

Subtask 2. For this subtask, we can generate every single permutation
in lexicographical order and check if it is perfect. We can do this using
backtracking or the std::next permutation function.

Time complexity: O(n! × n)

Subtask 3. For this subtask, the previous solution will not work. However,
we can still generate every single perfect permutation in lexicographical or-
der. To do this, we can make a function which, given a perfect permutation
p, can generate the next perfect permutation in lexicographical order. How
do we do this? First, we need to find the smallest suffix of p which needs
to be permuted in order to get the next permutation. Let the first position
of that suffix be pos. Let S be the set of values pi so that i ≥ pos and Q
the set of values ai so that i > pos. To get the next permutation, for the
position pos, we will use the smallest value in S which is strictly bigger than
ppos. Then, we remove that value from S. These operations can be easily
implemented using a set data structure. Now, for all positions greater
than pos, it will always be optimal to build the suffix using the strategy
explained in Subtask 1. However, we won’t be able to use this strategy for

1



all suffixes of p, since some suffixes can’t be permuted in order to obtain
a perfect permutation. A very important observation, which will help us
further, is that a suffix can be permuted to make a perfect permutation if
and only if for each value x from 1 to n, the frequency of all values greater
than or equal to x in S, let us call it frsval, is greater than or equal to the
frequency of all values greater than or equal to x in Q, let us call it frqval. In
order to test if this property is true for all suffixes, we can make a segment
tree for which SegmentTreeval = frsval − frqval. We can start from the right
side of the array and update the segment tree, then check if the suffix can
be used to get the next permutation. As long as the minimal value in the
segment tree is greater that or equal to 0, the suffix is good, and we can
use the strategy described above. Then, we can simply apply this function
k − 1 times.

Time complexity: O(nk log(n))

Subtask 4. From now on, we need to start thinking about a solution
which is not affected by k. We will start from the left side of the array and
for each position pos, we will iterate through all values val which were not
already used and are greater than or equal to apos. Then, we will once again
build the sets S and Q, but this time S will contain the values which are
not yet used in 1, . . . , pos. Note that we can simply build them every time
from scratch. Now, we want to find out how many permutations exist for
which we’ve already chosen the prefix 1, . . . , pos − 1 and ppos = val. We
will consider the sets as (0-indexed) arrays, sorted in decreasing order. Let
indi be the biggest index so that Sindi ≥ Qi, then we can use the following
formula to find the number of such permutations:

cntPerms =
n−pos−1

∏
i=0

indi − i + 1

Now, if cntPerms is greater than k, then ppos = val, otherwise, we subtract
cntPerms from k and move on to the next value of val. We will prove for the
next subtasks that we will iterate through no more than n + log2 k values
of val overall, but for now, it is not necessary.

Time complexity: O(n2 log n)

Subtask 5. For this subtask, we need to make an important observation.
Let frGreaterval be the frequency of values greater than or equal to val in the
array a. We call a fixed value a value val for which frGreaterval = n − val+ 1.
The observation is that all fixed values will only contribute with 1 to the

2



product in the formula for cntPerms, and all non-fixed values will contribute
with at least 2. That means we only need at most log k non fixed values to
exceed the current value of k. Therefore, we can simply build an array next
so that nexti is the next non-fixed value, starting from i. Then we iterate,
exactly how we did in Subtask 4. This time, when we find a fixed value,
we can simply assign it using the strategy in Subtask 1. If the value is not
fixed, there are two possibilities: if the amount of non fixed values to the
right is bigger than log k, we can once again assign the value using the
method in Subtask 1, otherwise we can iterate through all non fixed values
until we exceed the value of k or reach the end of the array. We can easily
see that we only need to iterate at most log k times through values.

Time complexity: O(n log k)

Subtask 6. Note that the solution below also provides the proof for
its complexity. If you are looking for a simpler solution, check the last
paragraph. For this subtask, we need to make an almost complete solution
of the problem. First of all, we define a bucket as an interval [x, y] for which
x is fixed, y + 1 is fixed or y = n and there is no value a so that x ≤ a ≤ y,
and a is fixed.

Lemma 1. If we use the strategy described in Subtask 1 to assign the values
for the prefix 1, . . . , pos, as long as there are at least l different values i1, . . . , il
greater than pos so that ai1 , . . . , ail are all in the same bucket, that bucket will
contribute with at least 2l−1 in the formula for finding cntPerms (since all values
will contribute with at least 2 except for the smallest one, which is fixed).

We denote the size of a bucket (after choosing a prefix of length pos
and assigning its values using the strategy in Subtask 1) as the number of
indices i for which i > pos and ai is in that bucket. We can easily observe
that for all values which are contained by buckets of size 1, there is only
one way of assigning them, so it is redundant to find cntPerms.

Let pos be the biggest value for which there are at least log k values
which contribute with at least 2 (we say that a value contributes with at
least 2 if the size of its bucket is at least 2 and it is not the smallest value
left in the bucket). We can observe that, for this value of pos, there will be
at most 2 log k values contained by buckets of size greater than 1. Now,
we will use the strategy in Subtask 1 to assign the values on indices from
1 to pos. Then for the indices from pos + 1 to n, if a value ai is contained
by a bucket of size 1, then we can once again assign it using the strategy
in Subtask 1. Otherwise, we can just use the algorithm in Subtask 4 and

3



iterate through all values val, find S and Q, then compute cntPerms. Now,
what is the complexity of this? For at most log k indices, we will need
to iterate all possible values val, which are at most log k. Then, for each
such value, we also find S and Q. Please note that we need to use set data
structures for finding S and Q in order not to add an additional log n to
the complexity.

Time complexity: O(n log2 k)

Full solution. We need to optimise the solution above. The observation
is that we don’t need to find S and Q every time. In fact, we observe that
buckets don’t influence each other, meaning that if ai is in a bucket, then
pi must be in the same bucket. The proof for this is quite simple: if for
some i, pi is not in the same bucket as ai, we will be left with too many
values in that bucket and won’t be able to complete the permutation (note
that pi can’t be in a bucket lower than ai). This also gives us a proof of the
lemma used in Subtask 6: assigning all values using the strategy in Subtask
1 always guarantees that pi will be in the same bucket as ai. Assigning a
value from a certain bucket is like removing that value from the bucket
completely, while the new formed bucket still has the initial properties.
And since the lemma holds for the initial state, it will therefore hold for
any state of the array.

Now, we can normalise the values in the buckets whose sizes are greater
than 1 (those through which we will need to iterate, as we explained in
Subtask 6) and solve the problem separately for them. This takes around
log3 k time. All the other values can be assigned using the strategy in
Subtask 1, this process taking n log n time.

Time complexity: O(n log n + log3 k)

Finding a simpler solution. Of course, there are other solutions, but most
of them don’t also provide a very good explanation of their complexity.
In fact, we expected the competitors to find solutions with very good
complexities, without being able to completely prove them. For example,
an other optimisation of the solution in Subtask 4 is the following:

First of all, we will reverse the formula for cntPerms, by redefining indi
to be the smallest index so that Qindi ≤ Si. Now, the formula becomes:

cntPerms =
n−pos−1

∏
i=0

(n − pos − indi)− i + 1

We observe that the only values which are changed in the new formula for

4



cntPerms when selecting a value val for position pos and moving on to the
next position are those between apos and ppos. Note that all those values
are not yet selected (meaning all of them are in S). But those are exactly
the values we iterate when finding val! Each one of them is decreased by
one (this happens because all of them are in the same bucket, as explained
above, but understanding this is not necessary for solving the problem this
way), meaning that if we have a data structure which can find the product
of all its values, decrease one of the values by one and remove a value (for
example a Segment Tree which makes sure the product does not exceed k or
a Treap), we can update the value of cntPerms in just log n time. Therefore,
the problem is solved, without needing any extra observations. However,
the full proof of the complexity is given by the initial solution.

Time complexity: O(n log n)

5



Problem “Treasure Hunting”

Prop: Alexandru Luchianov

For all subtasks, we will use an additional matrix t, where ti,j is equal
to the number of treasures in the cell (i, j).

Subtasks 1 & 2. For these subtasks, all cells are treasure cells. In the
initial state, the number of treasure cells reachable from (i, j) is (n − i +
1)(m − j + 1) We will make an additional matrix sum, sumi,j is equal to
the sum t1,j + . . . + ti,j. For update operations, we can change the value of
tx,y, then update all values sumx,y, sumx+1,y, . . . , sumn,y in O(n). For query
operations, the result will be equal to the sum (sumn,y − sumx−1,y) + . . . +
(sumn,m − sumx−1,m), which we can find in O(m) time.

Time complexity: O(nm + Q(n + m))

Subtasks 1,3 & 4. We observe that for these subtasks, the amount of cells
reachable from any treasure cell is very small. Therefore, we can use a
fill algorithm in order to find all cells reachable from a starting cell. For
updates, we simply change the value of ti,j. For queries (and for finding S),
we will find the sum of all cells (i, j) which are reachable from the starting
cell (x, y) (using the fill algorithm).

Time complexity: O(n2m2 + Qnm)

Subtask 5. For this subtask, finding S needs an optimal solution. However,
we can solve the operations exactly how we did for Subtask 4. There are
many ways of finding S without knowing the full solution for the operations.
One of the easiest one of them to understand is the following:

We will calculate a matrix d where di,j is equal to the number of treasure
cells reachable from (i, j). di,j = 0 if (i, j) is a wall. If only one of the cells
(i, j + 1) and (i + 1, j) is a treasure cell, then it is easy to see that di,j is
equal to the value of d in that cell. However, if both (i, j + 1) and (i + 1, j)
are treasure cells, it gets a bit harder. If we simply add di,j+1 and di+1,j,
then we will count some cells twice. In fact, we only need to subtract the
number of cells which are reachable from both (i, j + 1) and (i + 1, j), since
those are the ones which we’ve counted twice. But how do we calculate the
number of such cells? Let (i′, j′) be the cell with the smallest coordinates
which is reachable from both (i, j + 1) and (i + 1, j) (note that it will have
the smallest line and the smallest column among all such cells). Because

6



of the property of the matrix, all cells reachable from both (i, j + 1) and
(i + 1, j) are also reachable from (i′, j′).

The only thing left to do is to find (i′, j′). This can be done by calculating
an additional matrix c, which can be calculated as follows:

ci,j =


di,j, if (i, j) is a treasure cell
ci,j+1, if (i, j + 1) is a wall
ci+1,j, if (i + 1, j) is a wall
ci+1,j+1, if both (i, j + 1) and (i + 1, j) are treasure cells

Now, we can calculate di,j = di,j+1 + di+1,j − ci+1,j+1. Why does this
work? Let’s assume we have an area of walls which are connected to each
other. Let (xmax, ymax) be the wall with the biggest coordinates among
them. Then, ci,j for all these walls will be equal to dxmax+1,ymax+1. But for any
treasure cell (i, j) for which (i, j + 1) and (i + 1, j) are also treasure cells
and (i + 1, j + 1) is a wall, the cell (i′, j′) we talked about earlier is exactly
(xmax + 1, ymax + 1)! Therefore, all values of d and c can be calculated using
the formulas above. The value of S will be the sum of all values of d.

Time complexity: O(Qnm)

Subtask 6. For this subtask, let’s say we can build a matrix b of bitmasks,
for which the k-th bit in the bitmask bi,j is equal to 1 if the cell (k/m +
1, k%m + 1) is reachable from (i, j). In other words, we assign each cell
(x, y) the ((x − 1)m + y − 1)-th position in the bitmasks. Then, if the cell
(i, j) is a wall, bi,j = 0, otherwise, bi,j = bi+1,j | bi,j+1. For finding S, the
number of treasure cells reachable from the cell (i, j) is equal to the number
of set bits in bi,j. For solving the operations, we will first make an other
bitmask B. The k-th bit in B is 1 if the cell assigned to that bit is a treasure
cell which contains a treasure. For updates, we can simply update B. For
queries, the result will be the number of set bits in (bi,j & B). But now,
how can we maintain all those bitmasks? One way of doing that is using
bitset. Another way is simply building a vector of integers, in which the
first position represents the first 32 bits, the second position represents the
next 32 bits and so on.

Note that the complexity of this solution is the same as the one presented
in Subtask 4. However, when using bitmask operations, we can process
32 bits at a time, meaning that the constant of the solution is around 1/32,
making it fast enough for this subtask.

Time complexity: O(n2m2 + Qnm)

7



Full solution for answering the queries. For the last subtask, we will
need a full solution. We can find S exactly like we did for Subtask 5. For
the queries, however, we will need an algorithm which takes at most n + m
steps per operation.

First of all, for a query on the cell (x, y), let us consider two paths from
(x, y) to (n, m):

1. A path which is obtained by a fill algorithm which prioritizes going
to the right.

2. A path which is obtained by a fill algorithm which prioritizes going
down

We observe that, because of the special property of the maze, every
single treasure cell which is inside of the area in the matrix which is
delimited by these two paths is reachable from (x, y). Why? If a cell (i, j) is
not reachable from (x, y), but it is inside of that area, that means there is at
least one path from (1, 1) to (i, j) which does not intersect with any of the
two paths. But since the two paths surround that area completely, this is
impossible. Therefore, we can just find these two paths, then calculate the
number of treasure cells which contain a treasure which are inside of the
area delimited by these paths.

To calculate the number, we will make a solution similar to the one in
Subtasks 1 and 2. Once again, we will calculate t and sum. For the updates,
we can modify t and sum exactly like we did for Subtasks 1 and 2. For the
queries, we can find the paths in O(n + m) time. Now, let upi be the small-
est line of a cell on column i which is included in the first path, and downi
be the biggest line of a cell on column i which is included in the second
path. Then, the answer to the query is equal to (sumdowny,y − sumupy−1,y) +

(sumdowny+1,y+1 − sumupy+1−1,y+1) + . . . + (sumdownm,m − sumupm−1,m). This
can be calculated in O(m) time.

Time complexity: O(nm + Q(n + m))

8



Problem “Statues”

Prop: Alexandru Luchianov

In the following we will denote Ak
n = n!

(n−k)! . It represents the number
of ways of selecting k objects from n possible objects without replacements.
Note that in order to calculate this modulo M, we will have to use the
modular multiplicative inverse. Since Ak

n = (n− k+ 1)(n− k+ 2) . . . n, if there
exists a value Mx for which n − k < Mx ≤ n then Ak

n ≡ 0 (mod M), so we
only care about the values of n and k for which there is no such x. In this
case, Ak

n ≡ Ak
n mod M ≡ (n mod M)!(((n − k) mod M)!)−1 (mod M). Thus

Ak
n mod M can be computed immediately from the values of 0!, 1! . . . , (M−

1)! and (0!)−1, (1!)−1, . . . , ((M − 1)!)−1, which can be precomputed.

Subtask 1. For this subtask we will generate all permutations of length n
and check for each one of them if it respects all restrictions. Note that q is
also low for this subtask.

Time complexity: O(n! × nq)

Subtask 2. For this subtask we will define, for each statue i, the a mask
smaski, where smaski,j is 1 if statue j must be built before i, or 0 otherwise.
We can now observe that statue i can be built if and only if all the statues
in smaski have already been built. Furthermore, these are consecutive bits,
so the value smaski will always be of value 2x − 1.

We will solve the subtask using dynamic programming. Let’s define
dpmask = number of ways to build the statues in the positions of mask. Let’s
fix a bit j which is set in the mask. Then j can be built if and only if smaskj
is a submask of mask ⊕ j. Therefore, we will have the following dynamic
programming:

dpmask =
n

∑
j=0

{
dpmask⊕2j , if the j-th bit is set and smaskj ⊆ mask ⊕ 2j

0, otherwise

Time complexity: O(2nn)

Subtask 3. For this subtask we only have one restriction. The statues in
the towns from y + 1 to n have no restriction, so they can be placed in An−y

n
ways, leaving us with having to place the other y. Now, we can imagine
that the statues in the towns from x to y can only be placed in the days

9



from x to y, since the ones after that have already been placed. Therefore,
they can be placed in (y − x + 1)! ways, while the statues in the towns from
1 to x − 1 can be placed in (x − 1)! ways. In conclusion, the formula for
this subtask is

n!
(n − y)!

(y − x + 1)!(x − 1)!

Time complexity: O(log M)

Subtasks 4 & 5. For the fifth subtask, the restrictions are disjoint and
sorted. Therefore, we can apply the same intuition as we did for the third
subtask, while traversing the restrictions in descending order. The answer
is given by the formula

An−yq
n (yq − xq + 1)!A

xq−1−yq−1
xq−1 (yq−1 − xq−1 + 1)! . . . (y1 − x1 + 1)!(x1 − 1)!

For the fourth subtask, we can observe that for any two restrictions
(xi, n) and (xj, n) where xi < xj, they can be broken up into (xi, xj − 1) and
(xj, n), therefore obtaining disjoint restrictions and applying the formula
above.

Time complexity: O(q log q + q log M)

Subtask 6. Let r(i) be the rightmost x of any restriction (xk, yk) such that
xk ≤ i ≤ yk.

Theorem 1. The solution is equal to ∏n
i=1(i − r(i) + 1).

Proof. We will generate the permutation from left to right. At step i we
will have a permutation containing all elements 1 . . . i − 1. When we try to
introduce i into our permutation, we can observe that we have to position
it to the right of r(i)− 1 (that being the only constraint). Therefore, we can
position the i-th statue in i − r(i) + 1 towns.

The only step remaining is computing the values for r(i). In order to
do this, we can use a segment tree with range maximum updates. When a
restriction appears, we will update the range [x, y] with the value of x (if it
is greater than the current value).

Time complexity: O((n + q) log n)

10



Full solution. We can observe that r has at most q different values. In
conclusion, many consecutive positions have the same r value. Let i, i +
1, . . . i + k be such consecutive positions. By the formula above, they will
contribute to the answer with

(i − r(i) + 1)(i + 1 − r(i) + 1) . . . (i + k − r(i) + 1) =
(i + k − r(i) + 1)!

(i − r(i))!

We can now sort the restrictions and calculate the answer for an entire
interval with the formula above.

Time complexity: O(q log q + q log M)

11



Problem “Game”

Prop: Alexandru Luchianov

We refer the reader to [1] for a good survey paper on this problem.
We will first present some partial solutions.
Let’s ignore the condition that intervals have to be disjoint for now.
It is obvious that we have to select all intervals of length 1. Now, we are

able to answer all queries with length at most K. The obvious next step is
to also select all the intervals of length K + 1. Using these intervals we can
now also easily answer all queries of length up to K(K + 1). By continuing
this process we will select all intervals with lengths 1, K + 1, K(K + 1) + 1,
K(K(K + 1) + 1) + 1 and so on.

Some more experienced readers may have already realised that the
above solution is just a generalisation of a standard problem known as
RMQ. Unfortunately, we will have to change our approach entirely to force
the intervals to be disjoint. One technique related to RMQ are segment
trees so let’s try adapting them to the problem at hand.

For simplicity, we will assume that K = 2. We will try to split
the original problem [1, N] into two independent halves, [1, ⌊N/2⌋] and
[⌊N/2⌋+ 1, N]. We will solve the queries that fit completely inside one
of these halves in a recursive manner, we are left only with the queries
that cross the middle point. To solve them we will select all suffixes of
[1, ⌊N/2⌋] and all prefixes of [⌊N/2⌋+ 1, N]. This solution is optimal for
K = 2, however how can we generalize it for other K’s?

One simple way to generalize is to split the original problem [1, N] into
K parts/buckets. We will select all intervals that are a suffix or a prefix of a
bucket. How can we now solve a query? If the current query is contained
inside a bucket, we solve it recursively. Otherwise, the query can be split
into the suffix of a bucket, a few whole buckets, and the suffix of another
bucket. Unfortunately, this solution still does not achieve full score since
we can still do better.

To realize why this solution is not yet optimal, let’s try to improve our
solution for K = 3. We can try to select only even-length suffixes and
even-length prefixes of the second bucket. If a query requires a prefix from
the second bucket, we can just choose the closest even-length prefix and
add one additional unit interval to expand it. For example, let’s say that N
is 27, the first bucket is [1, 9], the second bucket is [10, 18] and we have to
answer the query [8, 14]. We will represent the query as a suffix from the
first bucket [8, 9], an even-length prefix from the second bucket [10, 13] and

12



a unit interval from the second bucket [14, 14].
We can try to extent this idea to a higher K. Let’s split the original

problem into K buckets. For the i-th bucket we will select all suffixes of
length divisible by i, and all prefixes of length divisible by k − i + 1. Let’s
think about what happens when we receive a query that starts in the i-th
bucket and ends in the j-th bucket. The suffix from the i-th bucket will
require at most one selected suffix and at most i − 1 unit intervals. The
prefix from the j-th bucket will require at most one selected prefix at at
most k − j unit intervals. We will also require j − i − 1 intervals that span
the buckets i + 1, i + 2, . . . , j − 1. Adding all of this together we have at
most K intervals.

13



Problem “Sequences”

Prop: Tamio Vesa-Nakajima

Let smax be the maximum sum of the values in a.

Subtasks 1, 2, 3 & 4. The length of the array is quite small, giving us the
possibility of using a slower solution. For the first 3 subtasks, we could
simply select two indices i and j with i ≤ j, then iterate the interval [i, j]
to find the sum of ai + ai+1 + . . . + aj. Then, all we need to do is check for
all values 2k, with 2k ≤ 106, if they divide the sum or not. To make this
solution run faster, it is easy to see why iterating the hole interval [i, j] once
more is redundant, since we could simply modify the sum of the interval
as we increase j.

Time complexity: O(n2 log vmax)

Full solution. For the last two subtasks, we need a faster solution. In fact,
we need a solution which doesn’t check every single possible contiguous
subsequence. First of all, let nrk be the number of all contiguous subse-
quences whose sum is divisible by 2k. We observe that if 2k+1 divides a
number, then 2k divides that number as well. We are interested in the num-
ber of subsequences for which k is the maximum value so that 2k divides
their sum, but we could also rephrase this as: the number of sequences for
which 2k divides their sum but 2k+1 doesn’t. So, out of all the subsequences
whose sum is divisible by 2k, we remove those whose sum is divisible by
2k+1. Therefore, the result is equal to:

S(a1, . . . , an) =
log smax

∑
k=1

(nrk − nrk+1)2k

Why does the sum end at log smax? Because by definition, 2log smax+1

exceeds the sum of any subsequence in the array. This value is actually
quite small, meaning that if we can find nrk for each value of k in linear
time, the problem is solved.

How do we do that? Let sumi = (a1 + a2 + . . . ai) % 2k. Let s be the
sum of values of an interval [i, j]. But s ≡ sumj − sumi−1 (modulo 2k), so if
we want s to be divisible by 2k, meaning that s ≡ 0 (modulo 2k), then sumj
should be equal to sumi−1. Therefore, the problem becomes equivalent to
finding the number of pairs of indices 0 ≤ i < j ≤ n for which sumi = sumj.
To do this, we can start from the left side of the array and keep track of the

14



frequency of all values in sum. At each step i, we increase the number of
sequences with the number of occurences of sumi which we’ve found so
far. Now, all we have to do is to solve this for all values of k and then use
the formula above to get the answer.

Time complexity: O(n log smax)

15



Problem “Caesar is back”

Prop: Lucian Badea, Tudor Mus, at

Subtask 1. For each query, any subsequence included in the interval in
the query will be a 1-step transformation. So for each query [l, r] the answer
will be the number of subsequences that it completely includes equal to:

(r − l + 1)× (r − l)
2

Time complexity: O(n + q)

Subtask 3. For each query [l, r] we can iterate through all subsequences
completely included in the interval [l, r] and check whether they are a
k-step transformation or not.

Time complexity: O(n + qn2)

Subtask 4. This approach no longer works, but we can precalculate for
each subsequence whether it’s a k-step transformation or not, so we can
answer the queries more efficiently.

Time complexity: O(n + n2 + q)

Subtask 5. We can divide the initial strings into disjoint intervals which
are k-steps transformation. We will also keep for each of these intervals
the number of fully included subsequences, which can be easily calculated
like in subtask 1. We know that for any subsequence that is a k-step
transformation it must be completely included in one of these intervals.

Therefore, for each query we will have to add the answer of all com-
pletely included intervals, and for the partially included ones, which are a
maximum number of two, we will calculate their contribution separately.
To find the partially included intervals we can maintain the intervals in
increasing order and do a binary search.

Time complexity: O(n + q log n)

Subtasks 2 & 6. For the second subtask, n is a 13-step transformation of
a and vice versa, which means that we have only two possible values of k,
0 and 13. The idea is exactly the same, but instead of doing a binary search
every time, we can calculate at the start, for each index, what interval
includes it.

16



Therefore, we can find the partially included intervals with just one
operation.

Now, we can extend this idea for all values of k in order to answer in
constant time for each query.

Time complexity: O(n + q)

17



References

[1] S. Raskhodnikova, Transitive-Closure Spanners: A Survey, pp. 167–196.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2010.

18


